Features and Benefits

- **Overclocked to 17 MHz readout**
 Industry fastest frame rates; 56 fps full frame.
- **EX2 Technology**
 Extended QE response
- **TE cooling to -100°C**
 Critical for elimination of dark current detection limit
- **Fringe Suppression**
 Reduced etaloning in NIR
- **OptAcquire**
 Optimize the highly flexible iXon for different application requirements at the click of a button
- **Count Convert**
 Quantitatively capture and view data in electrons or incident photons. Real-time or post-processing
- **Optically Centred Crop Mode**
 (Live cell super resolution mode)
 Continuous imaging with fastest possible frame rate from centrally positioned ROIs; 569 fps with 128 x 128 ROI. Highly enabling for live cell super-resolution and much, much more.
- **RealGain™**
 Absolute EMCCD gain selectable directly from a linear and quantitative scale
- **EMCAL™**
 Patented user-initiated self-recalibration of EM Gain
- **Direct Data Access**
 Camera Link output port to facilitate direct access to data for ‘on the fly’ processing.
- **Spurious Noise Filters**
 Intelligent algorithms to filter clock induced charge events from the background. Real time or post-processing
- **iCam**
 The market-leading exposure time fast-switching software
- **UltraVac™**
 Critical for sustained vacuum integrity and to maintain unequalled cooling and QE performance, year after year
- **Selectable amplifier outputs – EMCCD and conventional**
 ‘2 in 1’ flexibility. EMCCD for ultra-sensitivity at speed, conventional CCD for longer acquisitions
- **Superior Baseline Clamp and EM stability**
 Quantitative accuracy of dynamic measurements
- **USB 2.0**
 Universal plug and play capability
- **Built-in C-mount compatible shutter**
 Easy means to record reference dark images

The market leading back-illuminated EMCCD, now accelerated to **56 fps**.

The new iXon Ultra platform takes the popular back-illuminated 512 x 512 frame transfer sensor and overclocks readout to 17 MHz, pushing speed performance to an outstanding 56 fps (full frame), whilst maintaining single photon sensitivity and quantitative stability throughout. New Optically Centred Crop Mode unlocks unparalleled frame rate performance from centrally located ROIs, ideal for the particular speed and sensitivity requirements of super-resolution microscopy.

The iXon Ultra maintains all the advanced performance attributes that have defined the industry-leading iXon range, such as deep vacuum cooling to -100°C, extremely low spurious noise, and Andor’s patented EM gain recalibration technology (EMCA™). Count Convert functionality allows real time data acquisition in units of electrons or incident photons and OptAcquire facilitates one-click optimization of this versatile camera to a variety of application conditions.

Additional new features of the iXon Ultra include plug and play USB connectivity, a lower noise conventional CCD mode and an additional Camera Link output, offering the unique ability to directly access data for ‘on the fly’ processing, ideally suited to data intensive applications such as adaptive optics or super-resolution microscopy.

Specifications Summary

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active pixels</td>
<td>512 x 512</td>
</tr>
<tr>
<td>Pixel size (W x H)</td>
<td>16 x 16 μm</td>
</tr>
<tr>
<td>Active area pixel well depth</td>
<td>180,000 e⁻</td>
</tr>
<tr>
<td>Gain register pixel well depth</td>
<td>800,000 e⁻</td>
</tr>
<tr>
<td>Maximum readout rate</td>
<td>17 MHz</td>
</tr>
<tr>
<td>Frame rate</td>
<td>56 - 11,074 fps</td>
</tr>
<tr>
<td>Read noise</td>
<td>< 1 e⁻ with EM gain</td>
</tr>
<tr>
<td>Maximum cooling</td>
<td>-100°C</td>
</tr>
</tbody>
</table>
System Specifications *

<table>
<thead>
<tr>
<th>Model number</th>
<th>897</th>
</tr>
</thead>
</table>
| Sensor QE options | #BV: Back Illuminated, standard AR coated
BVF: Back Illuminated, standard AR coated with fringe suppression
UVB: Back Illuminated, standard AR with additional lumogen coating
#EX: Back illuminated, dual AR coated
EXF: Back illuminated, dual AR coated with fringe suppression |
| Fringe Suppression | Available on EX2 and BV sensor options |
| Active pixels | 512 x 512 |
| Pixel size | 16 x 16 μm |
| Image area | 8.2 x 8.2 mm with 100% fill factor |
| Minimum temperature, air cooled, ambient 20°C | -80°C
-95°C
-100°C |
| Thermostatic Precision | ± 0.01°C |
| Digitization | 16 bit @ all readout speeds |
| Triggering | Internal, External, External Start, External Exposure, Software Trigger |
| System window type | #BV and BVF sensors: UV-grade fused silica, ‘Broadband VIS-NIR’, wedged
UVB sensor: UV-grade fused silica, ‘Broadband VUV-NIR’, unwedged
#EX, EXF sensors: UV-grade fused silica, ‘Broadband VUV-NIR’, wedged
(other options available) |
| Blemish specification | Grade 1 sensor (CCD97), as defined by the sensor manufacturer e2v (see www.e2v.com for further details) |
| PC Interface | USB 2.0 |
| Lens Mount | C-mount |
| Direct Data Access | Camera Link 3-tap output |

Advanced Performance Specifications *

| Dark current and background events *4, 5 |
| Dark current (e- /pixel/sec) @ -85°C | 0.001
0.0018
Spurious background (events/pix) @ 1000x gain / -85°C |
| Active area pixel well depth | 180,000 e- |
| Gain register pixel well depth *6 | 800,000 e- |
| Pixel readout rates |
Electron Multiplying Amplifier
Conventional Amplifier
17, 10, 5, 1 MHz
3, 1 & 0.08 MHz |
| Read noise (e-) *7 | Without Electron Multiplication
With Electron Multiplication |
| 17 MHz through EMCCD amplifier | 89
5
10 MHz through EMCCD amplifier | 65
5
5 MHz through EMCCD amplifier | 37
5
1 MHz through EMCCD amplifier | 15
5
3 MHz through conventional amplifier | 9.6
-
1 MHz through conventional amplifier | 5.3
-
80 kHz through conventional amplifier | 2.7
-
Linear absolute Electron Multiplier gain | 1 - 1000 times via RealGain™ (calibration stable at all cooling temperatures) |
Linearity *8	Better than 99%
Vertical clock speed	0.3 to 3.3 μs (variable)
Timestamp accuracy	10 ns
Frame Rates (Standard Mode) **

<table>
<thead>
<tr>
<th>Binning</th>
<th>512 x 512</th>
<th>512 x 100</th>
<th>512 x 32</th>
<th>512 x 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x 1</td>
<td>56</td>
<td>397</td>
<td>277</td>
<td>704</td>
</tr>
<tr>
<td>2 x 2</td>
<td>109</td>
<td>699</td>
<td>503</td>
<td>1,136</td>
</tr>
<tr>
<td>4 x 4</td>
<td>206</td>
<td>1,099</td>
<td>840</td>
<td>1,613</td>
</tr>
</tbody>
</table>

Frame Rates (Crop Mode) - Optically Centred frame rates in brackets **

<table>
<thead>
<tr>
<th>Binning</th>
<th>256 x 256</th>
<th>128 x 128</th>
<th>64 x 64</th>
<th>32 x 32</th>
<th>512 x 100</th>
<th>512 x 32</th>
<th>512 x 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x 1</td>
<td>111 (174)</td>
<td>595 (569)</td>
<td>1,463 (1,492)</td>
<td>3,532 (2,024)</td>
<td>296</td>
<td>857</td>
<td>11,074</td>
</tr>
<tr>
<td>2 x 2</td>
<td>215 (329)</td>
<td>1,085 (1,014)</td>
<td>2,433 (2,329)</td>
<td>5,325 (1,054)</td>
<td>570</td>
<td>1,589</td>
<td>-</td>
</tr>
<tr>
<td>4 x 4</td>
<td>402 (554)</td>
<td>1,802 (1,662)</td>
<td>3,577 (3,237)</td>
<td>6,579 (1,252)</td>
<td>1,050</td>
<td>2,682</td>
<td>-</td>
</tr>
</tbody>
</table>

Quantum Efficiency Curves **

QE v Fluorophores Curve

Stability Plot

EM Gain stability in the iXon Ultra 897 @ 55 fps. 500 frame kinetic series; frame transfer (overlapped) acquisition; 17.8 ms exposure time; x300 EM gain.
Creating The Optimum Product for You

How to customize the iXon Ultra 897:

Step 1.
The iXon Ultra 897 comes with 5 options for sensor types. Please select the sensor which best suits your needs.

Step 2.
Please indicate alternative window option if required.

Step 3.
Please indicate which software you require.

Step 4.
For compatibility, please indicate which accessories are required.

Step 1.
Choose sensor finish option

#BV: Back-illuminated, standard AR coated
BVF: Back-illuminated, standard AR coated with fringe suppression
UVB: Back Illuminated, standard AR with additional lumogen coating

#EX: Back-illuminated, EX2 dual AR coated
EXF: Back-illuminated, EX2 dual AR coated with fringe suppression

Step 2.
Select alternative camera window (optional)
The standard window has been selected to satisfy most applications. However, other options are available. The alternative camera window code must be specified at time of ordering.

To view and select other window options please refer to the ‘Camera Windows Supplementary Specification Sheet’ which gives the transmission characteristics, product codes and procedure for entering the order. Further detailed information on the windows can be found in the Technical note – ‘Camera Windows: Optimizing for Different Spectral Regions’.

Step 3.
The iXon Ultra requires at least one of the following software options:

Solis Imaging A 32-bit and fully 64-bit enabled application for Windows (XP, Vista, 7 and 8) offering rich functionality for data acquisition and processing. AndorBasic provides macro language control of data acquisition, processing, display and export.

Andor SDK A software development kit that allows you to control the Andor range of cameras from your own application. Available as 32 and 64-bit libraries for Windows (XP, Vista, 7 and 8), compatible with C/C++, C#, Delphi, VB6, VB.NET, LabVIEW and Matlab. Linux SDK compatible with C/C++.

Andor iQ A comprehensive multi-dimensional imaging software package. Offers tight synchronization of EMCCD with a comprehensive range of microscopy hardware, along with comprehensive rendering and analysis functionality. Modular architecture for best price/performance package on the market.

Third party software compatibility
Drivers are available so that the iXon range can be operated through a large variety of third party imaging packages. See Andor web site for detail: andor.com/software

Step 4.
The following accessories are available:

OPTOMASK Optomask microscopy accessory, used to mask unwanted sensor area during Crop Mode acquisition.
XW-RECR Re-circulator for enhanced cooling performance
ACC-XW-CHIL-160 Oasis 160 Ultra compact chiller unit
OA-CNAF C-mount to Nikon F-mount adapter
OA-COFM C-mount to Olympus adapter
OA-CTOT C-mount to T-mount adapter

Creating The Optimum Product for You

How to customize the iXon Ultra 897:

Step 1.
The iXon Ultra 897 comes with 5 options for sensor types. Please select the sensor which best suits your needs.

Step 2.
Please indicate alternative window option if required.

Step 3.
Please indicate which software you require.

Step 4.
For compatibility, please indicate which accessories are required.

Step 1.
Choose sensor finish option

#BV: Back-illuminated, standard AR coated
BVF: Back-illuminated, standard AR coated with fringe suppression
UVB: Back Illuminated, standard AR with additional lumogen coating

#EX: Back-illuminated, EX2 dual AR coated
EXF: Back-illuminated, EX2 dual AR coated with fringe suppression

Step 2.
Select alternative camera window (optional)
The standard window has been selected to satisfy most applications. However, other options are available. The alternative camera window code must be specified at time of ordering.

To view and select other window options please refer to the ‘Camera Windows Supplementary Specification Sheet’ which gives the transmission characteristics, product codes and procedure for entering the order. Further detailed information on the windows can be found in the Technical note – ‘Camera Windows: Optimizing for Different Spectral Regions’.

Step 3.
The iXon Ultra requires at least one of the following software options:

Solis Imaging A 32-bit and fully 64-bit enabled application for Windows (XP, Vista, 7 and 8) offering rich functionality for data acquisition and processing. AndorBasic provides macro language control of data acquisition, processing, display and export.

Andor SDK A software development kit that allows you to control the Andor range of cameras from your own application. Available as 32 and 64-bit libraries for Windows (XP, Vista, 7 and 8), compatible with C/C++, C#, Delphi, VB6, VB.NET, LabVIEW and Matlab. Linux SDK compatible with C/C++.

Andor iQ A comprehensive multi-dimensional imaging software package. Offers tight synchronization of EMCCD with a comprehensive range of microscopy hardware, along with comprehensive rendering and analysis functionality. Modular architecture for best price/performance package on the market.

Third party software compatibility
Drivers are available so that the iXon range can be operated through a large variety of third party imaging packages. See Andor web site for detail: andor.com/software

Step 4.
The following accessories are available:

OPTOMASK Optomask microscopy accessory, used to mask unwanted sensor area during Crop Mode acquisition.
XW-RECR Re-circulator for enhanced cooling performance
ACC-XW-CHIL-160 Oasis 160 Ultra compact chiller unit
OA-CNAF C-mount to Nikon F-mount adapter
OA-COFM C-mount to Olympus adapter
OA-CTOT C-mount to T-mount adapter
Connecting to the iXon Ultra

Camera Control
- Connector type: USB 2.0

Logic
- Connector type: 26 way D Type with 8 programmable digital inputs or outputs for control and sensing of up to 8 external device

Camera Link Out
- Base 3-tap output (MDR 26 connector). Used as a parallel output for embedded applications.

Minimum cable clearance required
- 90 mm

Typical Applications

<table>
<thead>
<tr>
<th>Application</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single molecule detection</td>
<td>Cell Motility</td>
</tr>
<tr>
<td>Super resolution (PALM, STORM)</td>
<td>Whole genome sequencing</td>
</tr>
<tr>
<td>TIRF microscopy</td>
<td>FRET / FRAP</td>
</tr>
<tr>
<td>Spinning disk confocal microscopy</td>
<td>Fluorescence Correlation Microscopy (multi-beam)</td>
</tr>
<tr>
<td>Vesicle trafficking</td>
<td>Microspectroscopy / Hyperspectral imaging</td>
</tr>
<tr>
<td>Selective/single plane illumination microscopy (SPIM)</td>
<td>Lucky astronomy</td>
</tr>
<tr>
<td>Ion signalling (Calcium flux)</td>
<td>Adaptive Optics</td>
</tr>
<tr>
<td>Voltage sensitive dyes</td>
<td>Single Photon Counting</td>
</tr>
</tbody>
</table>
iXon Ultra 897

Order Today

Need more information? At Andor we are committed to finding the correct solution for you. With a dedicated team of technical advisors, we are able to offer you one-to-one guidance and technical support on all Andor products. For a full listing of our local sales offices, please see: andor.com/contact

Our regional headquarters are:

Europe
Belfast, Northern Ireland
Phone +44 (28) 9023 7126
Fax +44 (28) 9031 0792

Japan
Tokyo
Phone +81 (3) 3518 6488
Fax +81 (3) 3518 6489

North America
Connecticut, USA
Phone +1 (860) 290 9211
Fax +1 (860) 290 9566

China
Beijing
Phone +86 (10) 5129 4977
Fax +86 (10) 6445 5401

Items shipped with your camera:
- 1x Andor ACZ-03463: 2m Multi I/O timing cable, offering Fire, External Trigger, Shutter and Arm
- 1x 3m USB 2.0 cable Type A to Type B
- 1x Power supply with mains cable
- 1x Quick launch guide
- 1x CD containing Andor user manuals

Footnotes:

1. Assembled in a state-of-the-art cleanroom facility, Andor’s UltraVac™ vacuum process combines a permanent hermetic vacuum seal (no o-rings), with a stringent protocol to minimize outgassing, including use of proprietary materials.
2. Figures are typical unless otherwise stated.
3. Full Frame readout, fastest unbracketed vertical shift speed with no vertical clock amplitude boost
4. The dark current measurement is averaged over the sensor area excluding any regions of blemishes.
5. Using Electron Multiplication the iXon is capable of detecting single photons, therefore the true camera detection limit is set by the number of ‘dark’ background events. These events consist of both residual thermally generated electrons and Clock Induced Charge (CIC) electrons (also referred to as Spurious Noise), each appearing as random single spikes above the read noise floor. A thresholding scheme is employed to count these single electron events and is quoted as a probability of an event per pixel. Acquisition conditions are full resolution and max frame rate (17 MHz readout; frame-transfer mode; 0.5 µs vertical clock speed; x 1000 EM gain; 10 ms exposure; -85°C).
6. The EM register on CCD97 sensors has a linear response up to ~400,000 electrons and a full well depth of ~800,000 electrons.
7. Readout noise is for the entire system. It is a combination of sensor readout noise and A/D noise. Measurement is for Single Pixel readout with the sensor at a temperature of -75°C and minimum exposure time under dark conditions. Under Electron Multiplying conditions, the effective system readout noise is reduced to sub 1 e- levels.
8. Linearity is measured from a plot of counts vs. exposure time under constant photon flux up to the saturation point of the system.
9. All measurements are made at 17 MHz pixel readout speed with 0.3 µs vertical clock speed. It also assumes internal trigger mode of operation. Frame rates shown are for ‘Corner Tethered’ ROIs, with ‘Optically Centred’ ROI frame rates shown within brackets.
10. Quantum efficiency of the sensor at 20°C, as supplied by the sensor manufacturer.

Recommended Computer Requirements:
- 3.0 GHz single core or 2.6 GHz multi core processor
- 2 GB RAM
- 100 MB free hard disc to install software (at least 1 GB recommended for data spooling)
- USB 2.0 High Speed Host Controller capable of sustained rate of 40MB/s
- 10,000 rpm SATA hard drive preferred for extended kinetic series
- Windows (XP, Vista, 7 and 8) or Linux

Operating & Storage Conditions:
- Operating Temperature: 0°C to 30°C ambient
- Relative Humidity: < 70% (non-condensing)
- Storage Temperature: -25°C to 50°C

Power Requirements:
- 110 - 240 VAC, 50/60 Hz