Day /

RNA-seq and Differential Expression Analysis

Working with DESeq

What is DESeq?

 DESeq is an R package

* provides methods to test for
differential expression by use of the negative
binomial distribution

* For any given gene DESeq estimates the mean
(1) expression of that gene and the variance in
expression (0?)

— assumes that expression of a given gene across

multiple samples can be modeled by a negative
binomial (NB) distribution

93uey) p|o4 audo 7307

10000

100

Mean Gene Expression

HTSeq Counts

Output from HTSeq counts for each sample

HTSeq Counts

Gene Counts
HRA1 0
LSR1 421
NME1 636
RDN18-1 0
RDN18-2 0
RDN25-1 0
RDN25-2 0

)

DESeq Counts Table

Gene | Counts1 | Counts 2 | Counts3
HRA1 0 5 0
LSR1 421 500 400
NME1 636 600 674
RDN18-1 0 0 0
RDN18-2 0 0 0
RDN25-1 0 0 0
RDN25-2 0 0 0

$ paste <all HTSeq count files> > allCounts.txt
$ cut -f1,2,4,6,8 allCounts.txt > DESeq.counts.txt

Working with R

 DESeq is an R package

* Ris an open source software environment for
statistical computing and graphics
— Operates with command lines and jobscripts
— Has its own language and commands

$ qsub -T

-W X=FLAGS:ADVRES:sreadreslrg.0.0

-1 walltime=3:00:00 -1 nodes=1:ppn=1
—g short

$ /opt/R/2.15.1/bin/R

DESeq in R

* Terminal now is R, not unix
* To clear R console > ctrl+l (= unix clear command)

* Load DESeq package
> library(DESeq)

 List all DESeq functions
> |[s(pos="package:DESeq")

 Load counts data into R variable called data
> data = read.delim(

“/projects/sreadgrp/Day7/DESeq.counts.txt”, sep="\t",
header=TRUE, row.names=1)

Loading Gene Countsin R

> data =
read.delim(“/projects/sreadgrp/Day7/DESeq.counts.txt”
, sep="“\t”, header=TRUE, row.names=1)

> head(data)

WT.1 WT.2 RRP6.1 RRP6.2
HRAL 0 0 3 0
LSR1 164 313 1610 2207
NME1 422 652 5060 7234
RDN18-1 0 0 0 0
RDN18-2 0 0 0 0

RDN25-1 0 0 0 0

Setting up CDS (count data set)

> conditions = c(“WT”, “WT”, “RRP6”, “RRP6”)
> cds = newCountDataSet(data, conditions)
> cds = estimateSizeFactors(cds)

> sizeFactors(cds)

wr.1l WT.2 RRP6.1 RRP6.2
0.813092 0.932020 0.974623 1.3471957

> ?estimateDispersions
Select 1

Brings up usage information for function
estimateDispersions

estimateDispersions

estimateDispersions(

method — how to calculate variance estimates to
counts (default = ‘pooled’)

sharingMode — how to apply variance to gene
expression value (default = “maximum?”)

)

estimateDispersions

estimateDispersions(method=

'‘pooled' — estimate one pooled dispersion estimate across all
replicated samples (default), robost against outliers

'‘per-condition’ - For each condition with replicates, compute a
gene's empirical dispersion value by considering the data from
samples for this condition. For samples of unreplicated
conditions, the maximum of empirical dispersion values from
the other conditions is used.

'‘blind’ - no replicates, estimate dispersion across all samples

estimateDispersions

estimateDispersions(sharingMode=

'fit-only' - use only the fitted value.
Use this only with very few replicates,
and when you are not too concerned
about false positives from dispersion
outliers

1e-03

Dispersion value

1e-07

'maximum’ - take the maximum of
the two values. Recommended if you 1 100 10000
have at least 3 or 4 replicates Mean Gene Expression

'gene-est-only' - No fitting or sharing, use only the empirical value. This
method is preferable when the number of replicates is large and the empirical
dispersion values are sufficiently reliable (or else you have a high false positive
rate

> cds = estimateDispersions(cds, method=‘pooled’,
sharingMode="'fit-only’)

> results = nbinomTest(cds, “WT”, “RRP6”)

> write.table(results,
file="/Users/verajm/DESeq.results.txt”, sep="\t",
row.names=FALSE)

> significant = results[resultsSpadj < 0.1,]

Notes on R

To exit R: > quit() then select “n”

You can run R jobscripts (called Rscripts, file.R)
from the Unix command line

$ Rscript file.R

